spncci
is a code for ab initio calculations in an $\mathrm{Sp}(3,\mathbb{R})$ symmetry-adapted basis, via the symplectic no-core configuration interaction (SpNCCI) approach. Many-body Hamiltonian matrix elements are evaluated through a laddering procedure, involving $\mathrm{Sp}(3,\mathbb{R})$ and $\mathrm{SU}(3)$ group theoretical coefficients, leading to a dense Hamiltonian matrix, which is then diagonalized via the Lanczos algorithm. Algorithms are structured for efficient parallelization, in collaboration with Lawrence Berkeley National Laboratory (LBNL) Scalable Solvers group. Currently the code is OpenMP parallelized, with exploratory work on MPI/OpenMP implementation. Full MPI/OpenMP parallelization and integration with a distributed, iterative eigensolver for dense matrices with block structure is anticipated by early in the new allocation year.